Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Crit Care ; 27(1): 136, 2023 04 09.
Article En | MEDLINE | ID: mdl-37031182

BACKGROUND: In patients on mechanical ventilation, positive end-expiratory pressure (PEEP) can decrease cardiac output through a decrease in cardiac preload and/or an increase in right ventricular afterload. Increase in central blood volume by fluid administration or passive leg raising (PLR) may reverse these phenomena through an increase in cardiac preload and/or a reopening of closed lung microvessels. We hypothesized that a transient decrease in PEEP (PEEP-test) may be used as a test to detect volume responsiveness. METHODS: Mechanically ventilated patients with PEEP ≥ 10 cmH2O ("high level") and without spontaneous breathing were prospectively included. Volume responsiveness was assessed by a positive PLR-test, defined as an increase in pulse-contour-derived cardiac index (CI) during PLR ≥ 10%. The PEEP-test consisted in reducing PEEP from the high level to 5 cmH2O for one minute. Pulse-contour-derived CI (PiCCO2) was monitored during PLR and the PEEP-test. RESULTS: We enrolled 64 patients among whom 31 were volume responsive. The median increase in CI during PLR was 14% (11-16%). The median PEEP at baseline was 12 (10-15) cmH2O and the PEEP-test resulted in a median decrease in PEEP of 7 (5-10) cmH2O, without difference between volume responsive and unresponsive patients. Among volume responsive patients, the PEEP-test induced a significant increase in CI of 16% (12-20%) (from 2.4 ± 0.7 to 2.9 ± 0.9 L/min/m2, p < 0.0001) in comparison with volume unresponsive patients. In volume unresponsive patients, PLR and the PEEP-test increased CI by 2% (1-5%) and 6% (3-8%), respectively. Volume responsiveness was predicted by an increase in CI > 8.6% during the PEEP-test with a sensitivity of 96.8% (95% confidence interval (95%CI): 83.3-99.9%) and a specificity of 84.9% (95%CI 68.1-94.9%). The area under the receiver operating characteristic curve of the PEEP-test for detecting volume responsiveness was 0.94 (95%CI 0.85-0.98) (p < 0.0001 vs. 0.5). Spearman's correlation coefficient between the changes in CI induced by PLR and the PEEP-test was 0.76 (95%CI 0.63-0.85, p < 0.0001). CONCLUSIONS: A CI increase > 8.6% during a PEEP-test, which consists in reducing PEEP to 5 cmH2O, reliably detects volume responsiveness in mechanically ventilated patients with a PEEP ≥ 10 cmH2O. Trial registration ClinicalTrial.gov (NCT 04,023,786). Registered July 18, 2019. Ethics Committee approval CPP Est III (N° 2018-A01599-46).


Blood Volume , Cardiac Output , Fluid Therapy , Heart , Positive-Pressure Respiration , Respiration, Artificial , Humans , Blood Volume/physiology , Cardiac Output/physiology , Diagnostic Techniques, Cardiovascular , Diagnostic Techniques, Respiratory System , Fluid Therapy/methods , Heart/physiopathology , Hemodynamics , Positive-Pressure Respiration/adverse effects , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , ROC Curve
2.
Crit Care ; 26(1): 219, 2022 07 18.
Article En | MEDLINE | ID: mdl-35850771

BACKGROUND: Prone position is frequently used in patients with acute respiratory distress syndrome (ARDS), especially during the Coronavirus disease 2019 pandemic. Our study investigated the ability of pulse pressure variation (PPV) and its changes during a tidal volume challenge (TVC) to assess preload responsiveness in ARDS patients under prone position. METHODS: This was a prospective study conducted in a 25-bed intensive care unit at a university hospital. We included patients with ARDS under prone position, ventilated with 6 mL/kg tidal volume and monitored by a transpulmonary thermodilution device. We measured PPV and its changes during a TVC (ΔPPV TVC6-8) after increasing the tidal volume from 6 to 8 mL/kg for one minute. Changes in cardiac index (CI) during a Trendelenburg maneuver (ΔCITREND) and during end-expiratory occlusion (EEO) at 8 mL/kg tidal volume (ΔCI EEO8) were recorded. Preload responsiveness was defined by both ΔCITREND ≥ 8% and ΔCI EEO8 ≥ 5%. Preload unresponsiveness was defined by both ΔCITREND < 8% and ΔCI EEO8 < 5%. RESULTS: Eighty-four sets of measurements were analyzed in 58 patients. Before prone positioning, the ratio of partial pressure of arterial oxygen to fraction of inspired oxygen was 104 ± 27 mmHg. At the inclusion time, patients were under prone position for 11 (2-14) hours. Norepinephrine was administered in 83% of cases with a dose of 0.25 (0.15-0.42) µg/kg/min. The positive end-expiratory pressure was 14 (11-16) cmH2O. The driving pressure was 12 (10-17) cmH2O, and the respiratory system compliance was 32 (22-40) mL/cmH2O. Preload responsiveness was detected in 42 cases. An absolute change in PPV ≥ 3.5% during a TVC assessed preload responsiveness with an area under the receiver operating characteristics (AUROC) curve of 0.94 ± 0.03 (sensitivity: 98%, specificity: 86%) better than that of baseline PPV (0.85 ± 0.05; p = 0.047). In the 56 cases where baseline PPV was inconclusive (≥ 4% and < 11%), ΔPPV TVC6-8 ≥ 3.5% still enabled to reliably assess preload responsiveness (AUROC: 0.91 ± 0.05, sensitivity: 97%, specificity: 81%; p < 0.01 vs. baseline PPV). CONCLUSION: In patients with ARDS under low tidal volume ventilation during prone position, the changes in PPV during a TVC can reliably assess preload responsiveness without the need for cardiac output measurements. TRIAL REGISTRATION: ClinicalTrials.gov (NCT04457739). Registered 30 June 2020 -Retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT04457739.


Prone Position , Respiration, Artificial , Respiratory Distress Syndrome , Tidal Volume , COVID-19/epidemiology , Humans , Pandemics , Prone Position/physiology , Prospective Studies , Respiration, Artificial/methods , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Tidal Volume/physiology , Treatment Outcome
...